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Motivation Example

e Symmetries influence dynamics, determine kinds of allowable solutions.

o Certain symmetries are preserved by dynamics (e.g., 1d Burger's equation u; = —uuy). ’ ______ i 'ﬂ‘

Even initial conditions (IC’s) lose even-ness, odd IC’s remain odd under time evolution.

e Symmetries reduce the dimensionality of the search space - useful in numerical computations of invariant
solutions.

o Determine and classify the subgroups of the Plane Poiseuille Flow (PPF) symmetry group, to aid in the
search for and classification of invariant solutions of PPF [Aghor and Gibson, 2022].

Plane Poiseuille Flow Examples of transformations in the x — z plane.
L
Algorithm to Find Relevant Subgroups
b
——>w Find subgroups of orders 2,4, 8 using Lagrange’s theorem/ different generators.
lgnore subgroups where 7, and 7, appear as single entries in the list of generators. Periodicity on
y — 5 smaller domains.

a 7 Between remaining subgroups of the same order check for quarter-box-shift conjugacies.

X

Only consider one subgroup per conjugacy class.

PPF schematic.

o Base state: [U,V,W](z,y,2) = [1 —4>,0,0]. Why lIgnore 7, and 7. as Single Generators?
* Ut = U +u, prot = P +p, Vprort = Pre, + Vp.
o Constant bulk velocity constraint (o) = (U)g = Upuk = 2/3 and (u)q = 0, with

L., | |
(ot = (U)o = Ubuik = 2/3 and (u)q = 0, where (-)o = igr fo, - d2 | @,
o Base pressure P, in Eqn.(1) is then a dynamic variable P,(t), adjusting to satisfy the bulk velocity LZ/Z"'\'!'""" """""" [ B
constraint. ; \
Ou 1 1 Z ' Ly/2 =
— +oU +[U -V]ju+ [u-V]ju=-V +—V2u+<—U”—P)e, (a) L. (b)
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Symmetry Operations @ T . S
o Governing equations (1) symmetric under following transformations: (C) Lx/3 (d) 2Lv/3
o lu, v, w|(z,y, 2) = [u, —v, w|(z, —y, 2) Cartoon for cases where (a) 7,, (b) 7., (c) 7,. and (d) 7(L,/3, L./3) appear as independent generators of a subgroup. In the figures
LT T - ’ 7 e (a) and (b), we can consider smaller periodic domains of lengths L, /2 and L,/2, respectively. However, no such reduction is possible
Ot U, W] (2, y,2) = U, v, —wl(z,y, =2), (2) in the case of figures (c) and (d).
Ty, 0)|u, v, w|(x,y, 2) = |u, v, w|(x + Ly, 2+ £,),
o A general symmetry operation v can be written as follows [Gibson et al., 2009] - Independent Non-trivial Subgroups of G

u, v, w|(z,y, 2) = [S.u, Syv, S;w|(5:2 + az Ly, 2y, S22 + a.L.), (3)
7 / / (Tuz) = {1, Tz} (oy) =1{1,04} (02) = 11,0:}
(0:72) =41, 0.1} (oyT:) = {1,097} (oyT) = {1, 0yTa}
<0-y7-:1:z> — {17 Oysz} <0yz> — {17 Oyz} <O-yz7-:1:> — {17 Oszx}

Table: List of independent order-2 subgroups up to quarter-box-shift conjugacy.

® s, and s, can take values {+1},
® a, and a, denote streamwise and spanwise translations, and can take real values.
e Can write a data-structure that represents symmetry operations for PPF:
o, =(1,—-1,1,0,0),
o,=(1,1,—1,0,0), (4) (Tazr 02) <7_:Ez70y> <7_:z:zao-y7_z>
Tl 0,) = (1,1,1,a.,a,), (Tuzs Oyz) (02, 0) (02, 0yT)
<Uza UyTx> <027 Uysz> <OZT$7 Uy>
(02Tuy OyT2) (O2Tuy OyTa) (O:Tu, OyTaz)

Table: List of independent order-4 subgroups up to quarter-box-shift conjugacy.

where a, = {,/L, and a, =¢,/L..
* Can define a multiplication operation for two symmetry-objects v, = (S14, S1y, S12, G124, G12) and
V2 = (82:1:7 S2yy 5225 A2 Cbzz) -
Y12 = (8133 © S2x, Sly * S2y, S1z * S22, mOd(au + S12024, 1), mOd(alz + 81:G2z, 1)) (5) <sz> 025 0y>
<7-3327 0z, UyTz>

e Consistent with physical meaning of transformations.
Table: List of independent order-8 subgroups up to quarter-box-shift conjugacy.

Why Are Half-box-shifts Important?

Dynamics in Invariant Subspaces: Examples of TWs

7(0;,0)0,T(ly,0) 0y u = T7({,,0) 0,u,
70, 0)7(l,,0) 0y 0y u = wu, (6)
7(20,,0) u = wu.

® Thus 7(¢,,0) o, symmetry implies = periodicity with length 2/, and is equivalent to 7(L,/2,0) o,
symmetry on a L, = 2¢, periodic domain.

® Only consider the group G = (0, 0., T;;, T.) with discrete symmetries.

e Can show that G is Abelian.
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Quarter-box-shift Conjugacies ) -
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Comparison between streamwise averaged y — z cross sections of TWs with (a) (7., 0,) and (b) (0.7, 0,) symmetries imposed.

TW in (a) travels in both streamwise and spanwise directions while TW in (b) only travels in the streamwise direction. Computed
using Channelflow 2.0 [Gibson et al., 2008|.

e For notational convenience, define half-box shifts in streamwise and spanwise directions as

7, = 7(5L4,0) = (1,1,1,0.5,0),

7. =7(0,3L.) = (1,1,1,0,0.5). (7)
o Also, 7. = 7,7, = (1,1,1,0.5,0.5). References
e We further define quarter-box-shifts as

2 = (AL, 0) = (1,1,1,0.25,0), 8 [A%hor _and Gibson, 2.022]bAghor, F; alnd GFi)bﬁon,.lJI. I]c:| (2022).
212 (0, le) — (1,1,1,0,0.25). nvariant symmetric subspaces or plane Foiseullle tlow.
? 4 upnder prep., 17
Consider t b f G, (0,) and (0.T.). . . . .,
® -onsider two SHbgroups © () and (0.7 > S REERY. |Gibson et al., 2008] Gibson, J. F., Halcrow, J., and Cvitanovi¢, P. (2008).
* Can show (o) ~ {0.7.) under quarter-box-shift conjugation, i.e., 0.7. = - """o.7:"". Visualizing the geometry of state space in plane Couette flow.
7';1/2(727'21/2 =(1,1,1,0,—0.25) - (1,1, —-1,0,0) - (1,1,1,0,0.25) Journal of Fluid Mechanics, 611:107-130.
=(1,1,1,0,-0.25) - (1,1, -1,0,0.75) (9) |Gibson et al., 2009] Gibson, J. F., Halcrow, J., and Cvitanovi¢, P. (2009).
= (1,1,-1,0,0.5) Equilibrium and travelling-wave solutions of plane Couette flow.
— 0,T,. Journal of Fluid Mechanics, 638:243-266.

e Quarter-box-shift conjugation partitions the invariant subgroups of G in conjugacy classes.
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