Invariant Subspaces of Channel Flow

Pratik Aghor and John F. Gibson

Integrated Applied Mathematics Program, Univeristy of New Hampshire, USA

(2)

(3)

(4)

(6)

(7)

(8)

(9)

Motivation

Even initial conditions (IC's) lose even-ness, odd IC's remain odd under time evolution.

 Symmetries reduce the dimensionality of the search space - useful in numerical computations of invariant solutions.

Example

• Determine and classify the subgroups of the Plane Poiseuille Flow (PPF) symmetry group, to aid in the search for and classification of invariant solutions of PPF [Aghor and Gibson, 2022].

Plane Poiseuille Flow

- Base state: $[U, V, W](x, y, z) = [1 y^2, 0, 0].$
- $\boldsymbol{u}_{tot} = \boldsymbol{U} + \boldsymbol{u}$, $p_{tot} = P + p$, $\nabla p_{tot} = P_x \boldsymbol{e}_x + \nabla p$.
- Constant bulk velocity constraint $\langle \boldsymbol{u}_{tot} \rangle_{\Omega} = \langle \boldsymbol{U} \rangle_{\Omega} = U_{bulk} = 2/3$ and $\langle \boldsymbol{u} \rangle_{\Omega} = 0$, with $\langle \boldsymbol{u}_{tot} \rangle_{\Omega} = \langle \boldsymbol{U} \rangle_{\Omega} = U_{bulk} = 2/3$ and $\langle \boldsymbol{u} \rangle_{\Omega} = 0$, where $\langle \cdot \rangle_{\Omega} = \frac{1}{\mathsf{vol}(\Omega)} \int_{\Omega} \cdot d\Omega$.
- Base pressure P_x in Eqn.(1) is then a dynamic variable $P_x(t)$, adjusting to satisfy the bulk velocity constraint.

$$\frac{\partial \boldsymbol{u}}{\partial t} + v\boldsymbol{U'} + [\boldsymbol{U} \cdot \nabla]\boldsymbol{u} + [\boldsymbol{u} \cdot \nabla]\boldsymbol{u} = -\nabla p + \frac{1}{Re}\nabla^2 \boldsymbol{u} + \left(\frac{1}{Re}U'' - P_x\right)\boldsymbol{e_x}, \qquad (1)$$
$$\nabla \cdot \boldsymbol{u} = 0.$$

Symmetry Operations

• Governing equations (1) symmetric under following transformations:

Examples of transformations in the x - z plane.

Algorithm to Find Relevant Subgroups

- Find subgroups of orders 2, 4, 8 using Lagrange's theorem/ different generators.
- Ignore subgroups where τ_x and τ_z appear as single entries in the list of generators. Periodicity on smaller domains.
- Between remaining subgroups of the same order check for quarter-box-shift conjugacies.
- Only consider one subgroup per conjugacy class.

Why Ignore τ_x and τ_z as Single Generators?

$$\begin{split} \sigma_y[u,v,w](x,y,z) &= [u,-v,w](x,-y,z), \\ \sigma_z[u,v,w](x,y,z) &= [u,v,-w](x,y,-z), \\ \tau(\ell_x,\ell_z)[u,v,w](x,y,z) &= [u,v,w](x+\ell_x,y,z+\ell_z), \end{split}$$

• A general symmetry operation γ can be written as follows [Gibson et al., 2009] -

 $\gamma[u, v, w](x, y, z) = [s_x u, s_y v, s_z w](s_x x + a_x L_x, s_x y, s_x z + a_z L_z),$

• s_x and s_z can take values $\{\pm 1\}$,

- a_x and a_z denote streamwise and spanwise translations, and can take real values.
- Can write a data-structure that represents symmetry operations for PPF:

$$\sigma_y = (1, -1, 1, 0, 0),$$

$$\sigma_z = (1, 1, -1, 0, 0),$$

$$\tau(\ell_x, \ell_z) = (1, 1, 1, a_x, a_z),$$

where $a_x = \ell_x / L_x$ and $a_z = \ell_z / L_z$.

• Can define a multiplication operation for two symmetry-objects $\gamma_1 \equiv (s_{1x}, s_{1y}, s_{1z}, a_{1x}, a_{1z})$ and $\gamma_2 \equiv (s_{2x}, s_{2y}, s_{2z}, a_{2x}, a_{2z})$ -

 $\gamma_1 \cdot \gamma_2 = (s_{1x} \cdot s_{2x}, s_{1y} \cdot s_{2y}, s_{1z} \cdot s_{2z}, \operatorname{mod}(a_{1x} + s_{1x}a_{2x}, 1), \operatorname{mod}(a_{1z} + s_{1z}a_{2z}, 1)).$ (5)

• Consistent with physical meaning of transformations.

Why Are Half-box-shifts Important?

$$\tau(\ell_x, 0) \sigma_y \tau(\ell_x, 0) \sigma_y \boldsymbol{u} = \tau(\ell_x, 0) \sigma_y \boldsymbol{u},$$

$$\tau(\ell_x, 0) \tau(\ell_x, 0) \sigma_y \sigma_y \boldsymbol{u} = \boldsymbol{u},$$

$$\tau(2\ell_x, 0) \boldsymbol{u} = \boldsymbol{u}.$$

• Thus $\tau(\ell_x, 0) \sigma_y$ symmetry implies x periodicity with length $2\ell_x$ and is equivalent to $\tau(L_x/2, 0) \sigma_y$ symmetry on a $L_x = 2\ell_x$ periodic domain.

Cartoon for cases where (a) τ_x , (b) τ_z , (c) τ_{xz} and (d) $\tau(L_x/3, L_z/3)$ appear as independent generators of a subgroup. In the figures (a) and (b), we can consider smaller periodic domains of lengths $L_x/2$ and $L_z/2$, respectively. However, no such reduction is possible in the case of figures (c) and (d).

Independent Non-trivial Subgroups of ${\cal G}$

 $\begin{array}{l} \langle \tau_{xz} \rangle = \{1, \tau_{xz}\} & \langle \sigma_y \rangle = \{1, \sigma_y\} & \langle \sigma_z \rangle = \{1, \sigma_z\} \\ \langle \sigma_z \tau_x \rangle = \{1, \sigma_z \tau_x\} & \langle \sigma_y \tau_z \rangle = \{1, \sigma_y \tau_z\} & \langle \sigma_y \tau_x \rangle = \{1, \sigma_y \tau_x\} \\ \langle \sigma_y \tau_{xz} \rangle = \{1, \sigma_y \tau_{xz}\} & \langle \sigma_{yz} \rangle = \{1, \sigma_{yz}\} & \langle \sigma_{yz} \tau_x \rangle = \{1, \sigma_{yz} \tau_x\} \\ \end{array}$ Table: List of independent order-2 subgroups up to quarter-box-shift conjugacy.

 $\begin{array}{c|c} \langle \tau_{xz}, \sigma_z \rangle & \langle \tau_{xz}, \sigma_y \rangle & \langle \tau_{xz}, \sigma_y \tau_z \rangle \\ \langle \tau_{xz}, \sigma_{yz} \rangle & \langle \sigma_z, \sigma_y \rangle & \langle \sigma_z, \sigma_y \tau_z \rangle \\ \langle \sigma_z, \sigma_y \tau_x \rangle & \langle \sigma_z, \sigma_y \tau_{xz} \rangle & \langle \sigma_z \tau_x, \sigma_y \rangle \\ \langle \sigma_z \tau_x, \sigma_y \tau_z \rangle & \langle \sigma_z \tau_x, \sigma_y \tau_x \rangle & \langle \sigma_z \tau_x, \sigma_y \tau_{xz} \rangle \end{array}$

Table: List of independent order-4 subgroups up to quarter-box-shift conjugacy.

 $egin{aligned} &\langle au_{xz}, \sigma_z, \sigma_y
angle \ &\langle au_{xz}, \sigma_z, \sigma_y au_z
angle \end{aligned}$

Table: List of independent order-8 subgroups up to quarter-box-shift conjugacy.

Dynamics in Invariant Subspaces: Examples of TWs

Only consider the group G = (σ_y, σ_z, τ_x, τ_z) with discrete symmetries.
Can show that G is Abelian.

Quarter-box-shift Conjugacies

• For notational convenience, define half-box shifts in streamwise and spanwise directions as

$$\tau_x = \tau(\frac{1}{2}L_x, 0) = (1, 1, 1, 0.5, 0),$$

$$\tau_z = \tau(0, \frac{1}{2}L_z) = (1, 1, 1, 0, 0.5).$$

• Also, $\tau_{xz} = \tau_x \tau_z = (1, 1, 1, 0.5, 0.5).$

• We further define quarter-box-shifts as

 $\tau_x^{1/2} = \tau(\frac{1}{4}L_x, 0) = (1, 1, 1, 0.25, 0),$ $\tau_z^{1/2} = \tau(0, \frac{1}{4}L_z) = (1, 1, 1, 0, 0.25).$

- Consider two subgroups of G, $\langle \sigma_z \rangle$ and $\langle \sigma_z \tau_z \rangle$.
- Can show $\langle \sigma_z \rangle \sim \langle \sigma_z \tau_z \rangle$ under quarter-box-shift conjugation, i.e., $\sigma_z \tau_z = \tau_z^{-1/2} \sigma_z \tau_z^{1/2}$. $\tau_z^{-1/2} \sigma_z \tau_z^{1/2} = (1, 1, 1, 0, -0.25) \cdot (1, 1, -1, 0, 0) \cdot (1, 1, 1, 0, 0.25)$ $= (1, 1, 1, 0, -0.25) \cdot (1, 1, -1, 0, 0.75)$
 - =(1, 1, -1, 0, 0.5)
 - $=\sigma_z \tau_z$.
- Quarter-box-shift conjugation partitions the invariant subgroups of G in conjugacy classes.

Comparison between streamwise averaged y - z cross sections of TWs with (a) $\langle \tau_{xz}, \sigma_y \rangle$ and (b) $\langle \sigma_z \tau_x, \sigma_y \rangle$ symmetries imposed. TW in (a) travels in both streamwise and spanwise directions while TW in (b) only travels in the streamwise direction. Computed using Channelflow 2.0 [Gibson et al., 2008].

References

- [Aghor and Gibson, 2022] Aghor, P. and Gibson, J. F. (2022). Invariant symmetric subspaces of plane Poiseuille flow. *upnder prep.*, ??
- [Gibson et al., 2008] Gibson, J. F., Halcrow, J., and Cvitanović, P. (2008). Visualizing the geometry of state space in plane Couette flow. *Journal of Fluid Mechanics*, 611:107–130.
- [Gibson et al., 2009] Gibson, J. F., Halcrow, J., and Cvitanović, P. (2009). Equilibrium and travelling-wave solutions of plane Couette flow. *Journal of Fluid Mechanics*, 638:243–266.

Contact: pratikprashant.aghor@unh.edu/ pratik.aghor54@gmail.com